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Abstract

Expanding on the Susceptible-Infected-Recovered (SIR) epidemiological models, we review “Towards

a Characterization of Behavior-Disease Models,” which focuses on the impact of fear of a disease on

behavior changes that impact the transmission of the disease within a society. The reviewed paper

focuses on the impact of local and global prevalence-based fear, as well as local, belief-based fear and the

respective impact on societal behavior as it affects the disease transmission process. This paper seeks

to build on the ideas presented, interpreting the generalized results with respect to HIV epidemiological

models.

Introduction

Epidemiological models have been an invaluable tool in understanding and describing disease processes. As

epidemiological models have developed, they can be adapted to describe many types of infectious processes,

from short-term, recoverable diseases to chronic and life-threatening diseases. While many models have been

developed that describe behavioral changes that are externally imposed (for example, models that incorporate

a period of quarantine), very few models exist that describe how self-imposed behavioral changes impact the

disease processes.

In “Toward a Characterization of Behavior-Disease Models,” by Nicola Perra, Duygu Balcan, Bruno

Goncalves, and Alessandro Vespignani [7] present several models to describe two competing and interrelated

disease processes: the biological disease spread coupled with the fear of the disease, where fear is a contagious

process that impacts how the biological process manifests within a community. The paper addresses three

distinct types of fear, adapting the basic Susceptible-Infected-Recovered (SIR) model to incorporate each

of these fear contagions. The model is general, and is focused on application toward diseases with a short

infectious period with minimal long-term effects on the individuals once they have recovered. Although the

basic SIR model lends itself well to modeling diseases from which recovery is possible, with appropriate

adaptations, SIR models can also describe the dynamics of chronic or terminal illnesses [1]. The behavioral

adaptations presented by Perra et al. [7] are also applicable to different stages of a terminal disease process

as it manifests within a community.

In this paper, we will explore how the behavior-disease model is formulated, as well as explore how the

model might be applied to HIV models. We address model construction and some model analysis, as well

as present a possible model for application to a behavior-disease dynamic for HIV.
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Background Information

S-I-R Model

We begin by considering a basic SIR continuous-time, compartmental epidemiological model. In its most

basic form, the model assumes a closed population, N , is partitioned into three separate sub-populations

where members of the population transition through the different stages of a disease process, from susceptible

to infected to recovered [1, 3, 7]. This can be seen schematically with the following diagram

Figure 1: Schematic Representation of S-I-R Model

where β is the rate of transmission from susceptible to infected and µ is the rate of transmission from infected

to recovered. We translate this diagram into the following nonlinear system of differential equations, given

by

dS

dt
= −βS(t)

I(t)

N
dI

dt
= βS(t)

I(t)

N
− µI(t)

dR

dt
= µI(t)

We note in the model construction that a person transitions from susceptible to infected by interaction

with a portion of the infected population, whereas recovery occurs with no interaction term. Furthermore,

we note that

dS

dt
+
dI

dt
+
dR

dt
= 0

therefore imposing the constraint that the total population is constant.

Behavior-Disease Model

The focus of Perra et al. [7] was to couple two interacting models describing distinct contagious processes,

a biological disease and the fear the disease. They focused on three distinct types of fear that lead to self-

imposed behavioral changes that impact the transition parameters of the biological process. The first type of

fear they consider is local prevalence-based fear, where susceptible individuals adopt behavior changes as a
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result of interacting with an infected individual. The second type of fear considered is global prevalence-based

fear, where individuals adopt behavioral changes as a result of information available to the general public,

usually via television, newspapers, and the Internet. The final type of fear considered is local belief-based

fear, which causes behavioral changes via contact with individuals who have already acquired a fear of the

disease. Each type of fear is caused by different methods and therefore impact the biological disease process

differently [7].

Main Results

Constructing the Behavior-Disease Model

In order to construct a coupled model, a fourth compartment is defined for the SIR model, which classifies

the portion of the population who are still susceptible to the biological disease process, but have altered their

behavior as a result of fear. This compartment, denoted by SF , still requires an interaction with an infected

individual in order to transition to the biologically infected class, but the rate of transmission is affected

since those in the SF compartment have incorporated behavioral changes to prevent biological illness. Thus

we have that

SF + I
rββ−−→ 2I

where 0 ≤ rβ < 1 modulates the level of self-induced behavioral change. This is the premise of the in-

troduction of a behavioral component to an epidemiological model; however, much like an SIR model, this

modification can vary depending on how fear is introduced and spreads within a population [7].

Although the original paper considered three distinct types of fear, we will only consider the type that is

most applicable to the current HIV epidemic. Local, prevalence-based fear is applicable to the early stages

of the disease spread in the 1980’s, where fear of HIV directly related to exposure to the virus [4, 5]. Local

belief-based fear is more applicable to HIV in the 1990’s and early 2000’s, where fear was a self-perpetuating

contagion, and interacting with someone who had fear of HIV was more likely to generate more fear [5, 6].

At the current state in the epidemic process, however, most people are familiar with the dangers of HIV via

public information, so global prevalence-based fear is the most applicable to this disease process.

If we denote the rate of transmission of fear as βF , then Perra et al. [7] defines the contagion term as

βF (1− e−δI(t))

4



for 0 < δ ≤ 1. Since global prevalence-based fear is not dependent on interaction with an infected individual,

but does consider the absolute number of infected individuals, the fear contagion process acts on the entire

population but is still dependent on the number of infected individuals. Thus we have the following system

dS

dt
= −βS(t)

I(t)

N
− βFS(t)[1− e−δI(t)] + µFS

F (t)

[
S(t) +R(t)

N

]
dSF

dt
= −rββSF (t)

I(t)

N
+ βFS(t)[1− e−δI(t) − µFSF (t)

[
S(t) +R(t)

N

]
dI

dt
= −µI(t) + βS(t)

I(t)

N
+ rββS

F (t)
I(t)

N
dR

dt
= µI(t)

noting that

dN

dt
=
dS

dt
+
dSF

dt
+
dI

dt
+
dR

dt
= 0

which gives a constant population. The parameters are as follows:

Parameter Interpretation
β Average rate of new infections of disease
βF Average rate of new infections of fear
µF Rate at which a susceptible individual modifies behavior
rβ Rate of behavior change
µ Rate of recover

This is the model that is presented as a general model by Perra et al. [7] to describe the coupling of a

global prevalence-based fear contagion with a disease process [7].

Results of the Behavior-Disease Model

A key component of epidemiological models is the concept of a basic reproduction number, denoted R0. The

basic reproduction number is a method of quantifying the dynamics of a disease by consider the average

number of new infections that are generated from a single infected person in a population of susceptible

individuals [1]. If R0 < 1, then the model tends toward the disease-free equilibrium. However, if R0 > 1,

then the disease spreads and becomes an epidemic.

In considering the behavior-disease model, if the disease spreads faster than the fear of the disease, then

the basic reproduction number is defined as R0 = β
µ , which is standard for SIR models [1]. Biologically, we

interpret R0 to be a ratio of the rate of new infections to the rate of recovery, and it is clear that, when

β > µ, then the disease spreads, while β < µ implies that the disease dies out. Furthermore, since we have a

coupled model that considers two interacting disease processes, we have a basic reproduction number for the
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fear processes as well, defined as RF0 = rβR0. That is, the reproductive number for the spread of fear differs

from the reproductive number for the disease process by a magnitude of the same factor that regulates the

self-induced change [7].

Furthermore, for small values of δ, local, prevalence-based fear is nearly indistinguishable from the global

prevalence-based fear. Although local prevalence-based fear is not covered in this paper, it is noteworthy

that the spread of fear in both models is, in some way, dependent on interactions with an infected individual,

thus showing a connection between the result of two different social processes [7].

Constructing the HIV model

Since HIV can be spread through several different methods, we first note that we are considering transmission

of HIV via sexual interaction, rather than needle-sharing behavior of intravenous drug users or mother-to-

child transmission. There have been several robust HIV models that have been presented to describe the

dynamics of sexual transmission of HIV [2, 3, 4, 6]. For simplicity’s sake, we have chosen Blower et al.’s

model presented in [3]

dS

dt
= S0 − S(t)[βλ+ µS ]

dH

dt
= S(t)βλ−H(t)[ν + µH ]

dA

dt
= H(t)ν −A(t)[µA + δA]

where S is the portion of the population susceptible to HIV, H is the portion of the population infected

with HIV, and A is the portion of the population that has progressed to AIDS. The model parameters are

as follows:

Parameter Interpretation
S0 Rate at which new susceptibles join the population
β Average rate of aquiring new partners
λ Probability that partner is infected with HIV
µS Proportion of the susceptible population that becomes sexually inactive
ν Proportion of the HIV+ population that progresses to AIDS
µH Proportion of the HIV+ population that becomes sexually inactive
µA Proportion of the AIDS population that becomes sexually inactive
δA Proportion of the AIDS population that dies

We note that this model has several distinct features. First, new infections are characterized by two

constant rate terms, β and λ, rather than a dependency on interaction between the susceptible population

and a subpopulation of infected individuals, usually shown by βS(t) I(t)N . We also note that this model
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assumes a total population of N = 1, and to guarantee no net flux within the population, we assume that

S0 = S(t)µS +H(t)µH +A(t)[µA + δA].

Analysis of the HIV model

We note that the basic reproductive number, R0, is given by

R0 =
β

γ

where

γ = µS + µH + µA + δA

Biologically, we can interpret R0 to be a ratio of new infection rates to infected individuals removing them-

selves from the population via sexual abstinence or death. We note that, if the rate of new infections is

greater than the sum of the rates of individuals leaving the population, then R0 > 1 and the endemic equi-

librium is reached. However, if individuals leave the population faster than the rate of new infections, then

R0 < 1 and the population achieves a disease-free equilibrium.

The disease-free equilibrium (no presence of HIV in the population) is given by S(t) = H(t) = A(t) = 0,

so the DFE is (S0, 0, 0), where the entire population is susceptible, and no portion of the population is

infected with HIV or has progressed to AIDS. We note that the DFE is unstable.

The endemic equilibrium is given by

S∗ =
S0

βλ+ µS

H∗ =
S0βλ

(βλ+ µS)(ν + µH)

A∗ =
S0βλν

(βλ+ µS)(ν + µH)(µA + δA)

However, we note that the Jacobian of the system is given by


−βλ− µS 0 0

βλ −(ν + µH) 0

0 ν −(µA + δA)


Since the Jacobian is an upper triangular matrix, then the eigenvalues are components of the main diagonal,

given by

λ1 = −βλµS , λ2 = −(ν + µH), λ3 = −(µA + δA).
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We note that the equilibrium is stable, regardless of initial conditions, since all eigenvalues are real and

negative.

Behavior-HIV model

Using the same process as described in the behavior-disease model, we consider the contagion term within

the context of the HIV model described in the previous section,

βF (1− e−δ(H(t)+A(t)))

Thus we construct the following system of nonlinear differential equations

dS

dt
= S0 − S(t)[βλ+ µS ]− βFS(t)(1− e−δ(H(t)+A(t))) + µFS

F (t)S(t)

dSF

dt
= −rββλSF (t)H(t) + βFS(t)(1− e−δ(H(t)+A(t))) + µFS

F (t)S(t)

dH

dt
= −H(t)(ν + µH) + βλS(t) + rββλS

F (t)H(t)

dA

dt
= H(t)νA(t)(µA + δA)

where

dN

dt
= S0 − µSS(t)− µHH(t)− (µA − δA)A(t) = 0

and thus we have no net flux, and the parameters are as above.

The equilibria of this model are slightly more complicated because there are two competing contagion

processes. If we assume that S(t) = SF (t) = I(t) = H(t) = 0, then we have a DFE that is the same as

the HIV model, where the DFE is given by (S0, 0, 0, 0). Similarly, if we consider the endemic equilibrium

of the model where there is no fear contagion process (SF = 0), then the endemic equilibrium is identical

to the HIV endemic equilibrium. In this particular model, we note that that an endemic equilibrium for

the fear contagion after the disease process has been eradicated (H(t) = A(t) = 0) forces SF (t) = S(t) = 0

and thus the endemic equilibrium of just the fear contagion without the presence of the biological disease

is (S0, 0, 0, 0). Thus this particular model does not exhibit an institutional memory; once the biological

disease is not present in the society, the fear dissipates and does not continue to impact behavior. This is

not always true; analysis of Perra et al. [7] shows that some types of fear do create an endemic equilibrium

of the fear process once the disease has been eradicated, creating the idea of an “institutional memory,” or

long-term behavior changes that continue to impact a population after the catalyst for those changes has

8



been removed.

One unusual aspect of this model that is adapted from Perra et al. [7] and differs from many standard

models is the presence of the exponential transmission rate of the fear contagion, rather than a mass action

incidence rate or a standard incidence rate. The transmission rate is given by

βF (1− e−δ(H(t)+A(t)))

for 0 < δ ≤ 1 and is the primary rate that describes the interaction between the two competing disease

processes. We note that the term is dependent on the number of individuals in the population that are

infected with either HIV or AIDS. If we consider the behavior of δ, we have that

δ → 0⇒ βF (1− e−δ(H(t)+A(t)))→ 0

and the term becomes obsolete. However, we also note that

δ → 1⇒ βF (1− e−δ(H(t)+A(t)))→ βF (1− e−[H(t)+A(t)])

We note that as H(t) + A(t) increase, the entire contagion rate increases; that is, as the number of people

in the population that are HIV positive increase, fear of the disease increases accordingly. The presence of

this exponential term can be understood in terms of how it impacts the behavior of the model; however,

the presence and dependency on I(t) make an explicit analytical solution to this system difficult, if not

impossible, to achieve. A simultaneous endemic equilibrium of both disease processes, for example, cannot

be found explicitly as a result of the exponential transmission rate that is dependent on both A(t) and H(t).

Clearly, this model is substantially more complex than the previous models, and may require numerical

approximations in order to understand and interpret the model. However, it serves as one possible application

to the coupled behavior-disease model presented by Perra et al. [7] and helps further understand how HIV

and social response interact to change the dynamics of HIV transmission.

Discussion

This paper explored the construction of epidemiological modeling, beginning with an understanding of the

framework of continuous time, compartmental models. From there, we considered different methods of

coupling behavior models with epidemiological models, building off the construction presented by Perra

et al. [7]. Finally, we performed some basic analysis of several of the models, and presented a possible
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behavioral-HIV model for future consideration and analysis.

One of the most interesting findings of Perra et al. [7] was the possibility of a biologically disease free

equilibrium coupled with an endemic fear contagion equilibrium, raising the possibility of population memory,

where the behavioral changes become ingrained within the population. In an application to HIV, this could

manifest as a change in sexual practices such as a greater emphasis on barrier protection and frequent disease

testing, where these practices remain in the population even when the disease has been eradicated. Further

construction and analysis of coupled disease-behavior models with respect to specific disease processes can

provide insight into the interaction between biological diseases and social responses, which can be invaluable

in studying diseases that are coupled with social stigma to better understand the interplay between the two

contagion processes.

10



References

[1] Linda J.S. Allen. An Introduction to Mathematical Biology. Pearson, 2007.

[2] CP Bhunu, W Garira, and G Magombedze. Mathematical analysis of a two strain hiv/aids model with

antiretroviral treatment. Acta biotheoretica, 57(3):361–381, 2009.

[3] Michael Hubbell, Kyle Hunsberger, Kimberly Waite, and Rebecca Wilson. Module 791: Immunological

and epidemiological hiv/aids modeling. The UMAP Journal, 26(1):49–90, 2005.

[4] James M Hyman and E Ann Stanley. Using mathematical models to understand the aids epidemic.

Mathematical Biosciences, 90(1):415–473, 1988.

[5] Kathleen M MacQueen. The epidemiology of hiv transmission: trends, structure and dynamics. Annual

review of anthropology, pages 509–526, 1994.

[6] Alan S Perelson and Patrick W Nelson. Mathematical analysis of hiv-1 dynamics in vivo. SIAM review,

41(1):3–44, 1999.
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