An Empirical Method for Estimating Thermal System
Parameters Based on Operating Data in Smart Grids

Lee Holland, Sudent Member, IEEE, H. Bora Karayaka, Senior Member, IEEE, Martin L. Tanakaand Aaron Ball
Department of Engineering and Technology
Western Carolina University
Cullowhee, North Carolina USA
hbkarayaka@wcu.edu

Abstract — An experimental methodology was developed for
online system identification of a thermal system or heated space.
In this setting, the intelligent controller detects system
parameters during normal operation and adapts its
performance accordingly. The ultimate goal is to demonstrate
that load leveling with demand side management can be used to
reduce peak power consumption while maintaining residential
room temperatures at a comfortable level. A prototype enclosure
was built and equipped with a heater and thermal measuring
equipment. Data was collected during a 17 hour temperature
regulation experiment using a bang-bang controller similar to
those commonly used for residential heating control. First and
second order mathematical models were developed for thermal
system identification. The mathematical models utilized the
collected temper atur e data to estimate the net thermal resistance
and capacitance using system identification techniques. Results
showed the second order model to match the real system
characteristics reasonably well. It was found that even for a
small prototype enclosure, the estimated thermal parameters
showed quite large values of thermal capacitance which can be a
great asset for demand side management and control
applicationsin a smart grid. The system identification method
developed hereis an important step toward the development of
intelligent controllers.

l. INTRODUCTION

Domestic and commercia buildings use a majority (39%)
of the total energy in the U.S. Reducing energy consumption
by up to 30% is possible with component upgrades and
advanced controls [1]. In 2004, residential buildings
accounted for over 20% of the primary energy consumption
in the U.S. and a majority of this energy (29%) was used for
space heating [2]. A challenge in space heating residential
buildings is matching the thermal system to the electric power
supplied. Utilizing a system identification strategy with
thermostatically controlled appliances (TCA’'S) may reduce
thermal waste without affecting customer comfort.

Demand-side management (DSM) systems have been
modeled and implemented for space heaters, electric water
heaters (EWH'’s) and other TCA’s. TCA'’s with loads less
than 10kW respond quickly to control signals, but can be
undesirable due to rapid changes in room temperature that
reduced customer comfort [3]. Direct methods for controlling
EWH’s for DSM have been shown to save up to 2MW of
energy with 33,000 EWH’s [4]. A thermal model of a target
system may be utilized to ensure customer comfort levels and
to calculate power used by the system.

Using an electrical circuit representation of the thermal
system can enable the use of system identification techniques
to predict system parameters [5]. Once the thermal loads of a
system are known, these can be used with a predictive model
to save money by accounting for changes in weather and
utility prices (Table 1) [1].

In order to determine individual space heater loads, a
simple thermal characteristic model is needed to capture each
building’ s unique thermal heating characteristics. The thermal
loads can then be used as a passive energy sinks for demand
side management and advanced predictive controllers [3].
Such controls can save customers money in the case of
dynamic energy pricing and reduce thermal wastes due to
inadequate thermal models.

Thermal parameter estimation methods in the published
literature utilize various estimation methods for space heating
applications [1,7-8]. However, in these models, the electrical
power drawn has not specifically been characterized as an
input. In this paper, a novel experimental methodology is
presented that relates the thermal model to the electrical
power supplied. The ultimate goal is to develop an intelligent
controller that automatically detects the system thermal
parameters using the system identification methods proposed
here and uses these parameters for adaptive load regulation.

TABLE 1 — North America Proposed Pricing Structures [6]

Time of Cost . ~
Structure Additional Information
Day (cents/kWh)

Flat Rate 5.8|First 600kWh of Summer
(FR} 6.7|Additional Use
Time of Use 10pm-7am 3.5|off-peak
(TOU) 7am-1lam 7.5|mid-peak

1lam-5pm 10.5|on-peak
Critical Peak Pricing |10pm-7am 3.1|off-peak

7am-1lam
(CPP) Spm-10pm 7.5|mid-peak

1lam-5pm 10.5|on-peak

Event Block| 30|CPP 3-4 Hour event Block
Real Time Pricing  |Average 5| Price changes relative to
(RTP) Maximum 35| actual Power generation

The paper is organized as follows: Section |1 defines the
reference thermal circuit models and associated parameter
estimation scheme. Section 1ll elaborates on the test setup
and data collection methodologies. Section 1V presents the
results from model parameter estimation and validation
procedures. A brief discussion of the results and conclusions
areincluded in SectionsV and VI, respectively.



Il.  SYSTEM IDENTIFICATION SCHEME

A. Thermal Circuit Equivalency

Thermal resistance networks are often used to estimate
the rate of heat transfer through a system [9]. In these
systems, the heat transfer, temperature, and thermal resistance
are analogous to the current, voltage and €electrical resistance
of an equivalent electrica circuit, respectively. Energy
storage in the air and other materials may be represented
using capacitors.

Energy balance in athermal system can be described by

du .
T Pin — Qout > 9]

Wherei—[tj is the change in internal thermal energy (kJ/s), Pin

is the power delivered to the room by the electric heating
element (W), and Q,,, is the heat loss thought the walls of
the building (W). An increase in internal therma energy
results in an increase in temperature according to

dT 1 (dU
Frie m—c,,(a) )
where m is the mass of the thermal system (kg), ¢, is the

specific heat capacity (kJkg-K), and T is the system
temperature (K). Total heat transfer is estimated by,

Qout — (Trooml:routside) (3)
tot

where, Ry is the total thermal resistance. Ry, can account for
any combination of convective and conductive heat transfer
components. Combining equations 1, 2, and 3 yields

dTroom

_ (Troom—Toutside)
Py = reom—outside) 4y ¢ oro

Reot (4)

Two models were developed to represent the thermal
dynamics (5) using an electrical circuit analogy. Thefirstisa
first order circuit model with a single thermal capacitance
(Fig. 1) identical to (5) except for heater thermal resistance

R1. Thecircuit dynamics in state space form are

. 1 1 1
X=- X+ V; +—P
Rz2Cq R,C; 1 g M
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where X is the state variable representing room temperature
Troom @Nd y is the system output Ty, that is measurable. V; is
the input representing ambient temperature Tampient OF Toutside-
P, is the second input for electrical power supplied. R; and
R, or Ry are the thermal resistances for heaters and
enclosure, respectively. C; models the combined thermal
mass or capacitance which is the same as mc,in equation 4.
The second is amodel with two thermal capacitance levels
that also incorporates heater dynamics (Fig. 2). The circuit
model in state space formis
-1 1
X R,C R,C X 0 L
(5 )@ B
R2Cz  RzCz  R3C; 32 0

y =Xz (6)

where x; and x, are the state variables that represent heater
temperature Ty and room temperature Tqom, respectively. y

is the system ouput T,om that is measurable. V; is the input
that represents ambient temperature Taient- Pin IS the second
input for electrical power supplied. R;, R, and R; are the
thermal resistances for heater, air and enclosure. The
capacitor (C,) and (C,) are used to model combined heater and
air thermal capacitances in the room.
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Figure 2— Two Capacitance Thermal Circuit Model

B. Estimation Methodology

The estimation method utilizes a cost function V to
minimize error. This cost function can be stated as follows:

V(6) = < Zhole (k. 0)e(k, 0)] )

where 8 is the parameter vector to be estimated, N is the
number of samples, and e is the error between estimated and
measured output values. eis defined as

e(k) = Y(k) - Y(K) ®)
whereY(k) and Y(K) are the system and the model outputs,
respectively (Fig. 3). The cost function V can be effectively
minimized by using an adaptive version of Gauss-Newton

(gna) [10] and Levenberg-Marquardt (Im) [11] least squares
search algorithms.

The parameter estimation vector is 0= [R2 Cq] for the

first order model (5) and € = [R, C; R; C;] for the second
order model (6). The input vector is U = [Py Tamienr] and the
output vector ¥ = Troom. Since Ry is not part of models (5 &
6), it cannot be estimated.

Il.  TEST SETUPAND DATA COLLECTION

In order to perform system identification, the temperature
and power were measured over time to obtain the input-
output relationship (Fig. 3). A prototype insulated enclosure
with a built in heater was constructed (Fig. 4). The enclosure
did not have insulation on the bottom. Using the input power
data and the therma boundary temperatures, system



identification was used to determine the thermal capacitance
of each system model and the total thermal resistance of each
thermal boundary surface.
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Figure 3 — Parameter Estimation Scheme
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Figure 4— Thermal Enclosure with Sensors and Heater Panel
A. Instrumentation

A computer with two instruments was used to collect data
from the heated enclosure (Fig. 5). Input power was measured
using a Watts UpPro™ meter capable of measuring active
power, power factor, and line frequency for 120Vrms
appliances with currents up to 15 amps. A NI-cDAQ-9172
with NI 9219 and NI 9205 modules was used to measure
voltages of RTD sensors used to determine the temperatures.
A built-in Love Controls Series 16A PID controller was used
to turn on and off the small resistance heater inside the
enclosure.

B. Data Collection

Input power and temperature was monitored using a
custom LabVIEW™ program. Power levels were read viathe
Visa Seridl Communication port. A serial command was
written for external data logging with a 1 second time
interval. Data was then read with a Visa read node whenever
a serial command was sent from the power meter. The NI
9219 Module was used with a cDAQ-9172 to read four
Honeywell td5a™ three-wire RTD temperature sensors. One
sensor was used to measure the room ambient temperature,
and three sensors located inside the enclosure at the door,
floor, and heater were used to monitor the temperatures of
these components (Fig. 4). The RTD’s utilized a 5V external
source and a voltage divider application circuit that yielded
an accuracy of +/- 0.4 degrees Celsius. The voltage across the
RTD changed with the temperature and was converted to

temperature in Celsius after the data was collected. Power
and temperature data was saved to atext file.

RTD Temperature
Sensors for
Ambient and
Enclosure
Temperature

' l

NI cDAQ-9172
with NI 9219 and
NI 9205 Voltage

Sensors

-

5V DC
External
Source

PID Controlled

Bang-Bang Heater ]

120 Vrms
Source

Watts Up? Pro
Power Meter

]

A 4

USB COM Port |:| _
Labview Visa Labview DAQ
Serial Assistant VI

PC Host

Figure 5 — Data Acquisition Block Diagram
C. Testing Procedure

The testing procedure used a Love Controls Series 16A
PID controller that utilized a standard bang-bang controller
(turn on/off). The “on” temperature was set at 25.7 °C and the
“off” temperature was set at 29.3 °C. The controller used a
thermocouple sensor located in the close proximity to the
RTD door sensor (Fig. 4). This test was performed with a
wooden bottom and generally uniform insulation on the inner
walls.

During this test, the data was continuously collected for
over 17 hours. The electric power readings were sampled
each second and temperature readings were sampled every
1.8 seconds. In order to be consistent for the estimation
procedure, the data acquired was reorganized and up-sampled
at 2 sec intervals for both temperature and power readings.

IV. RESULTS

The measured data for temperature and electric power
readings can be seen in Fig. 6. The first 10,000 seconds of
data were removed from the anaysis in order to alow the
temperature to reach steady state. A total of seven thousand
data points (14,000 s) were used in the estimation procedure
and the rest of the data are reserved for validation.
Throughout the estimation process a function that measures
the quality of fit between estimated and measured data was
utilized [12]

JEa () - 700)°

ﬁzl(Y(k) - mean(Y))2

1-—

fit(%) = 100 * 9

where Y is measured data and Y is estimated model output
and the “mean” function denotes the mean value of the array.

The first order thermal model given by (6) was used to
estimate R, and C;. Without a-priori knowledge about the
physical parameters, the initial values for R, and C; were set
to 0.15 °C/W and 15,000 W-sec/°C, respectively, to begin the
search.
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Figure 6- Measurement dataacquired for about 62,000 seconds.

The fit between measured enclosure temperature and the
first order model is somewhat unacceptable (Fig. 7). The
quality of fit was estimated using both gna and Im search
algorithms (Table 2). The system parameters obtained from
analysis of samples 5000 through 12000 were validated using
data from samples 12000 through 32000. The percent fit
obtained for validation was quite close to the fit for the
origina estimation window. Both of the search algorithms
performed identicaly for R, while there were dlight
differences in C; estimates which had almost no impact on
the fit function. Eventually, both search agorithms produced
identical fit patterns. One interesting outcome of these
estimates was the substantially greater thermal capacitance
associated with the floor sensor location which may be
explained with the large thermal mass of tile floor.
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Figure 7 — First order model: Estimated vs. measured data for heater
temperature with fit 21.7%

TABLE Il. First Order Model Based Thermal Parameter Estimates

Temperature R, (°C/W) C: (W-sec/°C) Fit (%)
Sensor Im gna | Im gna |Estimation Validation
Heater 0.2221 | 0.2221 | 21971 | 21966 21.7 21.9

Door 0.1544 | 0.1544 | 29254 | 29254 284 285
Floor 0.1459 | 0.1459 | 60299 | 60295 27.3 220

The necessity to investigate a second order model for
system identification was evident due to the unsatisfactory fit
of the first order model. The estimation window of 7,000
samples was used for the second order model and the four
system parameters R,, C;, Rz and C, were initially estimated.

Initial values for these parameters (without a-priori
knowledge) were set to 15 °C/W, 150 W-sec/°C, 0.15 °C/W
and 16 W-sec/°C respectively. The performance of the second
order model was observed to be in good agreement with the
measured data (Fig. 8).
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Figure 8 — Second order model: Estimated vs. measured data for heater
temperature with fit 90.9%

The validation results also showed good agreement with
estimated parameters of the second order model (Fig. 9 &
Tables Il & 1V). The worst fit condition was the estimation
of system parameters using the floor temperature data set.
However, even in this case, the validation performance was
satisfactory (Fig. 10).

TABLE I1l. Second Order Model Based R, and C; Estimates

Temperature R, (°C/W) C; (W-sec/°C) Fit (%)
Sensor Im gna Im gna  |Estimation Validation
Heater 12578 | 9.882 | 130.836 [165.715| 90.9 92.0
Door 10.759 | 10.776 | 189.900 |189.672| 89.0 90.4
Floor 16.601 | 9.562 | 231.414 [399.410| 82.6 81.1

TABLE IV. Second Order Model Based R; and C, Estimates

Temperature R; (°C/W) C, (W-sec/°C) Fit (%)
Sensor Im gna Im gna Estimation-Validation
Heater 0.2228 | 0.2228 | 11075 | 1113.7 90.9 92.0

Door 0.1551 | 0.1551 | 1203.9 | 1203.8 89.0 90.4
Floor 0.1455 | 0.1455 | 1304.9 | 1313.7 82.6 81.1

The estimated value of R; and C, values were quite
consistent between the two of search algorithm. However, the
estimated values for R, and C, differed based on whether the
heater or floor data was used to make the estimations,
dthough the fit percentages were identica for both
agorithms. To further investigate this discrepancy, a
sensitivity study was conducted to understand the impact of
estimated parameter variations on the fit function. In this
investigation the estimated parameters for floor temperature
data were perturbed by different levels and corresponding fit
results were evaluatecl (Table V).

TABLE V. Estimated Parameter Sensitivities on Fit Function for Floor Data
(Criginal estimation fit of 82.6%)

Perturbation Fit for R, Fit for C; Fit for R3 Fit for C,
change change change change
+10% 80.4% 80.4% -80.3% 81.4%
+50% 62.5% 62.4% -80.3% 68.1%
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Figure 9 — Second order model: Measured vs. validated data for heater
temperature with fit 92.0%
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Figure 10 — Second order model: Measured vs. validated data for floor
temperature with fit 81.1%

R showed the highest sensitivity and therefore the highest
confidence in estimation. C, had the least sensitivity and
confidence. The sensitivities of R, and C; were amost
identical which leads to a form of dependence between R,
and C; in estimation. In fact, it can be realized by a closer
look into Table Il that the product of R, and C; will yield
quite similar values for both search algorithms (Table V1).

TABLE VI. Second Order Model Based R,C; Time Constant Estimates

Temperature R,C; (sec)
Sensor Im gna
Heater 1645.6 | 1637.5

Door 2043.2 | 2043.9
Floor 3841.7 | 3818.9

In addition to the sensitivity study, the uncertainties for
the estimated second order model were investigated using the
Matlab™ System Identification Toolbox. The uncertainties in
C,, Rs and R,C, (combined) for both algorithms were
approximately +10%. However, separate C; and R,
estimation uncertainties were reasonably larger which also
pointed to the discrepancies in their estimates. In this case,
gna algorithm yielded smaller uncertainties in comparison to
Im algorithm.

V. CONCLUSION

An experimental methodology was developed for on-line
system identification of a thermal system or heated space.
The parameters were estimated and validated using a standard
bang-bang controller operating at steady state. Two models
were developed and the second order model was found to
match the real system characteristics reasonably well.

Even for a small prototype enclosure, the estimated
thermal parameters showed quite large values of thermal
capacitance which can be a great asset for demand side
management and real time control applications in smart grid.
The system identification method developed here is an
important step toward the development of intelligent
controllers.

In future work, demand side management and control
methodologies for thermal load leveling based on the
estimated parameters will be investigated. In addition, larger
varying ambient temperatures will be considered to model
outdoor conditions.

ACKNOWLEDGMENT

The authors wish to thank the Center for Rapid Product
Realization at Western Carolina University, Prof. Gardner
and Prof. Zhang for the project support, and Prof. Adams and
Prof. Y anik for helpful suggestions.

REFERENCES

[1] P. Radecki and B. Hencey, "Online building thermal parameter
estimation via unscented kalman filtering,” in American Control
Conference (ACC), 2012, 2012, pp. 3056-3062.

[2] P. Waide, J. Amann and A. Hinge, "Energy efficiency in the north
american existing building stock," OECD/IEA, France, 2007.

[3] D. S. Cdlaway, "Can smaller loads be profitably engaged in power
system services?"' in Power and Energy Society General Meeting, 2011
|IEEE, 2011, pp. 1-3.

[4] J. Kondoh, Ning Lu and D. J. Hammerstrom, "An Evaluation of the
Water Heater Load Potential for Providing Regulation Service," Power
Systems, |EEE Transactions on, vol. 26, pp. 1309-1316, 2011.

[5] G. L. Skibinski and W. A. Sethares, "Thermal parameter estimation
using recursive identification," Power Electronics, IEEE Transactions
on, vol. 6, pp. 228-239, 1991.

[6] M. H. Nehrir, Runmin Jia, D. A. Pierre and D. J. Hammerstrom,
"Power management of aggregate electric water heater loads by voltage
control," in Power Engineering Society General Meeting, 2007. |EEE,
2007, pp. 1-6.

[71 lon Hazyuk, Christian Ghiaus, David Penhouet, “Optimal temperature
control of intermittently heated buildings using Model Predictive
Control Part | Building modeling,” Building and Environment 51
(2012) pp 379-387, Elsevier.

[8] Aaron Smith, Rogelio Luck, Pedro J. Mago, "Integrated parameter
estimation of multi-component thermal systems with demonstration on
a combined heat and power system," ISA Transactions 51 (2012) 507—
513, Elsevier.

[9] Y. Cengel, Introduction to Thermodynamics and Heat Transfer.
McGraw-Hill Science/Engineering/Math, 2007.

[10] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search

for Multivariable System Estimates' IFAC World Congress, Prague,

2005.

K. Levenberg, "A Method for the Solution of Certain Problemsin Least

Squares," |EEE Transactions on Circuits and Systems, vol. CAS-26,

1979.

[12] Matlab 2012a System Identification Toolbox.

(11]



