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Abstract — An experimental methodology was developed for 
online system identification of a thermal system or heated space. 
In this setting, the intelligent controller detects system 
parameters during normal operation and adapts its 
performance accordingly. The ultimate goal is to demonstrate 
that load leveling with demand side management can be used to 
reduce peak power consumption while maintaining residential 
room temperatures at a comfortable level. A prototype enclosure 
was built and equipped with a heater and thermal measuring 
equipment. Data was collected during a 17 hour temperature 
regulation experiment using a bang-bang controller similar to 
those commonly used for residential heating control. First and 
second order mathematical models were developed for thermal 
system identification. The mathematical models utilized the 
collected temperature data to estimate the net thermal resistance 
and capacitance using system identification techniques. Results 
showed the second order model to match the real system 
characteristics reasonably well. It was found that even for a 
small prototype enclosure, the estimated thermal parameters 
showed quite large values of thermal capacitance which can be a 
great asset for demand side management and control 
applications in a smart grid.   The system identification method 
developed here is an important step toward the development of 
intelligent controllers. 

I. INTRODUCTION 

Domestic and commercial buildings use a majority (39%) 
of the total energy in the U.S.  Reducing energy consumption 
by up to 30% is possible with component upgrades and 
advanced controls [1].  In 2004, residential buildings 
accounted for over 20% of the primary energy consumption 
in the U.S. and a majority of this energy (29%) was used for 
space heating [2].  A challenge in space heating residential 
buildings is matching the thermal system to the electric power 
supplied.  Utilizing a system identification strategy with 
thermostatically controlled appliances (TCA’s) may reduce 
thermal waste without affecting customer comfort.  

Demand-side management (DSM) systems have been 
modeled and implemented for space heaters, electric water 
heaters (EWH’s) and other TCA’s.  TCA’s with loads less 
than 10kW respond quickly to control signals, but can be 
undesirable due to rapid changes in room temperature that 
reduced customer comfort [3]. Direct methods for controlling 
EWH’s for DSM have been shown to save up to 2MW of 
energy with 33,000 EWH’s [4]. A thermal model of a target 
system may be utilized to ensure customer comfort levels and 
to calculate power used by the system.   

Using an electrical circuit representation of the thermal 
system can enable the use of system identification techniques 
to predict system parameters [5].  Once the thermal loads of a 
system are known, these can be used with a predictive model 
to save money by accounting for changes in weather and 
utility prices (Table 1) [1].   

In order to determine individual space heater loads, a 
simple thermal characteristic model is needed to capture each 
building’s unique thermal heating characteristics. The thermal 
loads can then be used as a passive energy sinks for demand 
side management and advanced predictive controllers [3].  
Such controls can save customers money in the case of 
dynamic energy pricing and reduce thermal wastes due to 
inadequate thermal models. 

Thermal parameter estimation methods in the published 
literature utilize various estimation methods for space heating 
applications [1,7-8]. However, in these models, the electrical 
power drawn has not specifically been characterized as an 
input. In this paper, a novel experimental methodology is 
presented that relates the thermal model to the electrical 
power supplied. The ultimate goal is to develop an intelligent 
controller that automatically detects the system thermal 
parameters using the system identification methods proposed 
here and uses these parameters for adaptive load regulation. 

TABLE 1 – North America Proposed Pricing Structures [6] 

 

The paper is organized as follows: Section II defines the 
reference thermal circuit models and associated parameter 
estimation scheme. Section III elaborates on the test setup 
and data collection methodologies. Section IV presents the 
results from model parameter estimation and validation 
procedures. A brief discussion of the results and conclusions 
are included in Sections V and VI, respectively. 



 

II. SYSTEM IDENTIFICATION SCHEME 

A.  Thermal Circuit Equivalency 

Thermal resistance networks are often used to estimate 
the rate of heat transfer through a system [9].  In these 
systems, the heat transfer, temperature, and thermal resistance 
are analogous to the current, voltage and electrical resistance 
of an equivalent electrical circuit, respectively.  Energy 
storage in the air and other materials may be represented 
using capacitors.  

Energy balance in a thermal system can be described by 

 
ୢ୙ୢ୲ = P୧୬ − Qሶ ୭୳୲ ,    (1) 

where 
ୢ୙ୢ୲  is the change in internal thermal energy (kJ/s), Pin 

is the power delivered to the room by the electric heating 
element (W), and Qሶ ୭୳୲ is the heat loss thought the walls of 
the building (W). An increase in internal thermal energy 
results in an increase in temperature according to 

 
ୢ୘ୢ୲ = 	 ଵ୫	ୡ౦ ቀୢ୙ୢ୲ ቁ	 (2)	

where m is the mass of the thermal system (kg), cp is the 
specific heat capacity (kJ/kg·K), and T is the system 
temperature (K).  Total heat transfer is estimated by, Qሶ ୭୳୲ = (୘౨౥౥ౣି୘౥౫౪౩౟ౚ౛)ୖ౪౥౪   (3) 

where, Rtot is the total thermal resistance. Rtot can account for 
any combination of convective and conductive heat transfer 
components.  Combining equations 1, 2, and 3 yields 

 P୧୬ = (୘౨౥౥ౣି୘౥౫౪౩౟ౚ౛)ୖ౪౥౪ + m	c୮ ୢ୘౨౥౥ౣୢ୲ 	.	 (4)	
Two models were developed to represent the thermal 

dynamics (5) using an electrical circuit analogy.  The first is a 
first order circuit model with a single thermal capacitance 
(Fig. 1) identical to (5) except for heater thermal resistance 
R1. The circuit dynamics in state space form are 

 xሶ = − ଵୖమେభ x + ଵୖమେభ Vଵ + ଵେభ P୧୬   

y = x        (5) 

where x is the state variable representing room temperature 
Troom and y is the system output Troom that is measurable. V1 is 
the input representing ambient temperature Tambient or Toutside. 
Pin is the second input for electrical power supplied. R1 and 
R2 or Rtot are the thermal resistances for heaters and 
enclosure, respectively. C1 models the combined thermal 
mass or capacitance which is the same as mcp in equation 4. 

The second is a model with two thermal capacitance levels 
that also incorporates heater dynamics (Fig. 2). The circuit 
model in state space form is ൬xሶ ଵxሶ ଶ൰ = ቌ ିଵୖమେభ ଵୖమେభଵୖమେమ ିଵୖమେమ − ଵୖయେమቍ ቀxଵxଶቁ + ቆ 0ଵୖయେమቇVଵ + ቆ ଵେభ0ቇP୧୬	 	

y = x2  (6) 
 

where x1 and x2 are the state variables that represent heater 
temperature Theater and room temperature Troom, respectively. y 

is the system ouput Troom that is measurable. V1 is the input 
that represents ambient temperature Tambient. Pin is the second 
input for electrical power supplied. R1, R2 and R3 are the 
thermal resistances for heater, air and enclosure. The 
capacitor (Cଵ) and (Cଶ) are used to model combined heater and 
air thermal capacitances in the room. 

 
Figure 1 – One Capacitance Thermal Circuit Model 

 

 
Figure 2– Two Capacitance Thermal Circuit Model 

 

B. Estimation Methodology 

The estimation method utilizes a cost function V to 
minimize error. This cost function can be stated as follows: 

 ܸ൫ߠ෠൯ = ଵே∑ [்݁൫݇, ,݇)෠൯݁ߠ ෠)]ே௞ୀ଴ߠ  (7) 

where θ is the parameter vector to be estimated, N is the 
number of samples, and e is the error between estimated and 
measured output values.  e is defined as 

e k Y k Y k( ) ( ) ( )= −          (8) 

where Y k( ) and ( )Y k are the system and the model outputs, 
respectively (Fig. 3). The cost function V can be effectively 
minimized by using an adaptive version of Gauss-Newton 
(gna) [10] and Levenberg-Marquardt (lm) [11] least squares 
search algorithms. 

The parameter estimation vector is θ = [R2 C1] for the 

first order model (5) and θ = [R2 C1 R3 C2] for the second 
order model (6). The input vector is U	=	[Pin Tambient] and the 
output vector Y		=	Troom.	Since R1 is not part of models (5 & 
6), it cannot be estimated. 

 

III. TEST SETUP AND DATA COLLECTION 

In order to perform system identification, the temperature 
and power were measured over time to obtain the input-
output relationship (Fig. 3).  A prototype insulated enclosure 
with a built in heater was constructed (Fig. 4). The enclosure 
did not have insulation on the bottom. Using the input power 
data and the thermal boundary temperatures, system 



 

identification was used to determine the thermal capacitance 
of each system model and the total thermal resistance of each 
thermal boundary surface. 

 

Ŷ

θ̂

 
Figure 3 – Parameter Estimation Scheme 

 

 
Figure 4– Thermal Enclosure with Sensors and Heater Panel 

A. Instrumentation 

A computer with two instruments was used to collect data 
from the heated enclosure (Fig. 5). Input power was measured 
using a Watts UpProTM meter capable of measuring active 
power, power factor, and line frequency for 120Vrms 
appliances with currents up to 15 amps. A NI-cDAQ-9172 
with NI 9219 and NI 9205 modules was used to measure 
voltages of RTD sensors used to determine the temperatures. 
A built-in Love Controls Series 16A PID controller was used 
to turn on and off the small resistance heater inside the 
enclosure.  

 

B. Data Collection 

Input power and temperature was monitored using a 
custom LabVIEWTM program.  Power levels were read via the 
Visa Serial Communication port. A serial command was 
written for external data logging with a 1 second time 
interval.  Data was then read with a Visa read node whenever 
a serial command was sent from the power meter.  The NI 
9219 Module was used with a cDAQ-9172 to read four 
Honeywell td5aTM three-wire RTD temperature sensors.  One 
sensor was used to measure the room ambient temperature, 
and three sensors located inside the enclosure at the door, 
floor, and heater were used to monitor the temperatures of 
these components (Fig. 4). The RTD’s utilized a 5V external 
source and a voltage divider application circuit that yielded 
an accuracy of +/- 0.4 degrees Celsius. The voltage across the 
RTD changed with the temperature and was converted to 

temperature in Celsius after the data was collected. Power 
and temperature data was saved to a text file. 

 
Figure 5 – Data Acquisition Block Diagram 

C. Testing Procedure 

The testing procedure used a Love Controls Series 16A 
PID controller that utilized a standard bang-bang controller 
(turn on/off). The “on” temperature was set at 25.7 °C and the 
“off” temperature was set at 29.3 °C. The controller used a 
thermocouple sensor located in the close proximity to the 
RTD door sensor (Fig. 4). This test was performed with a 
wooden bottom and generally uniform insulation on the inner 
walls. 

During this test, the data was continuously collected for 
over 17 hours. The electric power readings were sampled 
each second and temperature readings were sampled every 
1.8 seconds. In order to be consistent for the estimation 
procedure, the data acquired was reorganized and up-sampled 
at 2 sec intervals for both temperature and power readings. 

 

IV. RESULTS 

The measured data for temperature and electric power 
readings can be seen in Fig. 6. The first 10,000 seconds of 
data were removed from the analysis in order to allow the 
temperature to reach steady state. A total of seven thousand 
data points (14,000 s) were used in the estimation procedure 
and the rest of the data are reserved for validation. 
Throughout the estimation process a function that measures 
the quality of fit between estimated and measured data was 
utilized [12] 

(%)ݐ݂݅ = 100 ∗ 1ۇۉ −
ට∑ ൫ܻ(݇) − ෠ܻ(݇)൯ଶ௡௞ୀଵට∑ ൫ܻ(݇) − ݉݁ܽ݊(ܻ)൯ଶ௡௞ୀଵ  (9)				ۊی

where Y is measured data and ෠ܻ  is estimated model output 
and the “mean” function denotes the mean value of the array. 

The first order thermal model given by (6) was used to 
estimate R2 and C1. Without a-priori knowledge about the 
physical parameters, the initial values for R2 and C1 were set 
to 0.15 °C/W and 15,000 W-sec/°C, respectively, to begin the 
search. 
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