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Abstract—Surface Plasmon Resonance (SPR) is a highly sen-
sitive technique that utilizes the properties of surface plasmons
to detect the subtle changes in mass caused by adsorption of
molecules. The SPR technique is appealing because the amount
of adsorption is detected in real time, without the need to label
the adsorbate or prepare samples using a complex procedure.
Although much progress has been made in the analysis of SPR
images several challenges remain. In this paper, we addressed two
of these challenges, 1) automatic detection of regions of interest
(ROIs) and 2) accurate estimation of the molecular association
and disassociation parameters. With hundreds of ROIs on a
single SPR video frame image, our procedure to automatically
detect the ROIs greatly reduces the labor and time. The gray
level values of the ROIs were extracted over time and used to
estimate the molecule binding parameters, which are vital in
biosensing applications. The parameters were estimated using
Particle Swarm Optimization (PSO) and the standard Levenberg-
Marquardt (LM) algorithm. A comparison of the results revealed
that the PSO algorithm achieved a much lower mean squared
error (MSE), and hence more accurate, than the LM algorithm
for all of the active ROIs.

Index Terms—urface Plasmon Resonance (SPR), Image Anal-
ysis, Absorption, Particle Swarm Optimization, Estimationurface
Plasmon Resonance (SPR), Image Analysis, Absorption, Particle
Swarm Optimization, EstimationS

I. INTRODUCTION

Biomolecular interaction analysis is used to understand what
happens when different molecules encounter each other. This
knowledge is crucial for the advancement of biomedical research
and the development of medication in the pharmaceutical in-
dustry. An understanding of molecular binding properties is
necessary when determining the choice of drug target [1],
[2] or developing critical antibodies [3]. Many analytical tech-
niques have been designed to study biomolecular interactions,
such as scanning probe microscopy (SPM) [4], attenuated total
reflectance infrared spectroscopy (ATR-IR) [5] and spectral ellip-
sometry [6]. However, these techniques cannot perform analysis
in real-time and are not sensitive enough for many applications
in life science research.

Surface plasmons are electro-magnetic waves that propagate
along the interface between a metal and a dielectric material
under certain conditions. Surface Plasmon Resonance (SPR) [7]
has attracted considerable interest in bio-analytical research,
environment monitoring, and food safety applications [8], [9],
[10] because it is highly sensitive, does not require the analyte
to be labeled, and can be processed in real time.

Various techniques have been proposed to enhance SPR
sensing efficiency and accuracy, such as using a high-performance
metal and dielectric interface layer [11], applying a more stable
protein adhesion site [12], and designing a different structure

of SPR devices for sensing [13]. These approaches have greatly
improved SPR sensing capability and the detection results.
However, there has been little work on employing data processing
techniques to optimize the post-processing of SPR measurements.
In practice, the ROIs are often located manually, which is costly
both in labor and processing time. Hence, the first goal of this
paper is to develop an image processing based procedure to
automatically detect the ROIs. The second goal of this paper is
to accurately estimate the molecule association and dissociation
parameters. The LM algorithm is commercially implemented
and considered to be the state of the art algorithm in SPR
measurements. However, the LM algorithm is gradient based and
susceptible to falling into a local minimum. On the other hand,
the PSO algorithm is a bottom-up random search algorithm,
which can effectively avoid local minima. In this paper, PSO will
be evaluated to determine if it can achieve better fitting results
than the LM algorithm.

The rest of the paper is organized as follows. Section II pro-
vides a brief overview of the SPR technique and its sensorgram
data. Section III describes the image processing technique for
ROI detection. Section IV explains the application of PSO to
estimate the molecule binding kinetic parameters. Section V
presents the results. Section VI concludes this paper and includes
future work.

II. BACKGROUND

A. Surface plasmon resonance

In SPR, a p-polarized (polarized in the plane of the surface)
and collimated light beam is passed through the surface between
the prism and a glass slide coated with gold (or other metal).
The light is reflected off the thin gold coating (with a thickness
in the range of nm) that is in contact with the liquid solution
of interest. At the interface between the gold and the solution,
the incident light beam excites electron waves, which are called
surface plasmons.

At a certain incident angle, excitation of the surface plasmons
results in nearly complete attenuation of the specularly reflected
light intensity, thus reducing surface reflectivity. This particular
incident angle is called the SPR angle, which depends on the
wavelength of the incident light. At the SPR angle, the resonance
is extremely sensitive to changes in the refractive index of the
medium adjacent to the metal surface. These changes can be
monitored by checking the intensity of the reflected light in real
time, enabling precise measurements of thin film properties, as
well as the surface molecular interactions.

A typical SPR instrument includes a flow cell with a slide
and a monitoring system. The first group of interactants, called
the ligands, are fixed onto a dextran-coated gold surface of the
slide. The second interactant, called the analyte, is then injected
through the flow cell and traverses the surface of the slide. The
intensity of light reflected off the slide surface is affected by the



mass concentration of components at the liquid-surface interface.
The interaction of the soluble analyte with the immobilized
ligands is observed directly and continuously. The biomolecule
interaction analysis is performed in real time, but the measure-
ments can be also recorded as videos for later verification. The
collected SPR measurements contain information on the kinetic
rate and equilibrium binding constants for the interaction under
investigation.

B. SPR sensorgram fitting

Fig 1 shows the SPR curve of a typical bioaffinity interaction
experiment. In the association phase, the analyte is binding
to the ligand, and the light intensity reflected off the binding
site increases until it reaches the equilibrium phase, where the
binding is saturated and the light intensity is maximized. In the
disassociation phase, there is no more analyte in the flow, and the
already-bound ligand and analyte dissociate from each other. The
experiment ends by rinsing the analyte using a cleaning liquid
prior to testing the next sample.
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Fig. 1: Typical SPR curve

The sensorgram is fit to a kinetic model to compute the kinetic
constants that characterize the interactions between molecules
in SPR analysis. The most commonly used binding model for
SPR biosensors is the Langmuir model [14]. It describes a 1:1
interaction in which one ligand molecule interacts with one
analyte molecule. In theory, the formation of the ligand-analyte
complex follows second-order Kkinetics. However, because the
majority of SPR biosensors are fluidics-based and capable of
maintaining a constant analyte concentration in a continuous
liquid flow, the complex formation actually follows pseudo first-
order kinetics [14]. This model assumes that the binding reactions
are equivalent and independent at all binding sites and that the
reaction rate is not limited by mass transport. Many interactions
adhere to this model, in which the interaction is described by

kq
A+ B&ZAB €))
ka
where B represents the ligand and A the analyte. The rate of
complex formation is represented by the association constant
(ka, in the unit of M/~ 's™') and the rate of complex decay is
represented by the dissociation constant (£, in the unit of s7hH.
Another equilibrium constant is a derived quantity, Kp = kq/k,
(in the unit of M).

In the association phase, binding is measured as the analyte
solution flows over the ligand surface. The sensorgram in the
association phase examines the rate of complex formation. The
measurement strength is observed to increase over time as the
complex forms on the chip surface. The equations (2) to (6)
illustrate the derivation of the association equation [14], where
R; is the signal level reflecting the mass of the compound [AB].
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In the dissociation phase, the analyte introduced in the carrier
liquid is suddenly stopped. The rate of complex dissociation
follows simple exponential decay described by first-order kinetics.
The dissociation equation describes the time needed to reach
a certain response level during the dissociation phase. This
derivation is shown in equations (7) to (11), where R, is the
signal level at the end of association [14], and at the beginning
of dissociation.
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Equations (6) and (11) are the association and dissociation models
used later in parameter estimation.

C. System overview

The flow chart of the entire SPR data processing procedure
is shown in Fig 2. Section III explains the details in the
first two blocks on data pre-processing and automatic ROI
detection. Section IV explains the last block on optimized kinetics
parameter estimation.

III. ROI DETECTION

Raw data analyzed in this paper was a video captured by
PlexArray System, and provided by its manufacturer, Plexera®.
The system setup follows the prototype developed by Kretch-
mann [15], desorption is done about once a week, and sanitization
is done about once a month, to ensure the cleanness of the system.
In our experiment, the ligand was planted in an array as shown
in Fig 3. The analyte, Human Immunoglobulin G, passed through
the flow cell. The rows and columns of the binding sites were
indexed, so that their locations could be referred to later. In our
study, columns 1, 2, 11, and 12 contain data of interest, while
other columns are for reference purposes only.

A. Pre-processing of the video data generated by the SPR
machine

Images obtained using SPR are usually dark. The lack of
contrast between the elliptical ROIs and the background makes
the ROI detection difficult. Histogram Equalization (HE) is an
effective method to achieve a wide dynamic range and improve
the image contrast. Suppose the probability of intensity level 7,
in a digital image is approximated by
Tk
UN’ k=0,1,2,..., L —1 (12)
where M and N are the row number and column number of the
image, respectively, n; is the number of pixels that have intensity
rr, and L is the number of possible intensity levels in the image.
Then the histogram equalized intensity level is defined as
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Fig. 2: Procedure to process the video and estimate the molecule binding parameters automatically.
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Fig. 3: SPR experiment illustration

with £k =0,1,2,..., L —1, which approaches a uniform distribu-
tion that spans the entire dynamic range. Using HE, each pixel in
the input image with intensity 7, is mapped to a corresponding
pixel with level s; in the output image. The original cropped
image having an intensity histogram that spans a small range
was mapped using HE to obtain the HE image having a much
broader intensity histogram.

In an SPR experiment, usually the shape of the spots on
the chip is circular. However, image deformation in the camera
system distorts these circles into ellipses. In order to facilitate
the ROI detection, we apply an affine transformation that scales
the image and recovers the circular shape of the ROIs.

Circle detection is more efficient than ellipse detection in
computational cost, and the affine transformation is a cost
effective way to convert ellipse detection to circle detection.

The general affine transformation for pixel locations is defined

by
t11 tiz O
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where [z,y] are the pixel coordinates in the output image, and
[v,w] are the pixel coordinates in the input image. In our
experiment, the 7" matrix was empirically set to
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Applying the affine transformation to yield a scaled image with
circular ROIs.

After the ROIs were identified in the transformed domain, we
applied an inverse affine transform to convert the pixel locations
within the ROIs back to the original image and extracted the
exact gray level values from the original image.

B. Randomized Hough Transform for circle detection

The randomized Hough transform (RHT) [16], [17], [18] was
used to detect the circular ROIs in the preprocessed images.
Binding sites often have different brightness values, making a
global threshold selection for circle detection challenging. Circle
detection accuracy was improved by segmenting the image based
on the groups of the ligands prior to performing ROI detection
(Fig 4).

Fig. 4: Frame image segmentation

The RHT requires several user-defined parameters to control
the execution of the algorithm. These parameters are listed below.

o The validating threshold, v. The RHT accumulates votes
through random sampling of a relatively small number of
points in the circle parameter space. Once a circle parameter
point gets at least v votes, the existence of the corresponding
circle is verified in a verification phase of the algorithm. In
verification, the whole circle is constructed, and the exact
number of edge points on the circle is counted. Typically v
is a small integer with a value of 2 or 3.

o The circle percentage threshold, p. The RHT does not
expect to find a perfect circle. Instead, if there are enough



points on a candidate circle, the RHT reports it as a
real circle. This is not only reasonable but also necessary,
because there are many factors that distort or damage
parts of the circular pattern in the edge map. Such factors
include the quantization error of the imaging, failure of the
edge detection process to extract weak or blurred object
boundaries, and the existence of other random noise. In the
standard RHT, p is set as the required number of points
on a circle: if a candidate circle is verified to have at least
n. points on it, then the circle will be reported as a real
circle. However, a more reasonable form is to define p as
the ratio of n. to the circumference of the candidate circle.
For example, setting p = 0.7, a candidate circle is identified
as real if 70 percent of the circle is present on the edge
map.

o The maximum number of sampling, 7. The RHT terminates
its circle searching when no circle is detected after running
T samplings.

The RHT algorithm is summarized with the following steps

and a flow chart (Fig 5).

Step 1:Initialize a counter variable ¢ = 0, which stores
the number of unsuccessful samplings in the current
sampling run.

Step 2:Generate a binary edge map using the Canny edge
detector (although the choice of the edge detector can
be flexible, the Canny edge detector is optimal in
generating the edge map for natural images, and hence
often adopted [19]). Randomly select three edge points
from the binary edge map. This selection step is called
a sampling. If these points are collinear, they cannot
define a circle, thus the sampling fails. Set ¢ = ¢ + 1.
Otherwise a circle with a center at (z,y) and a radius
of r can be computed. The circle parameters (z,y, )
form a point in the parameter space.

Step 3:Store the parameter set, (x,y,r), into a hash table and
set a vote count for it. The count is initialized to 1. If
the parameter set is already in the hash table, increase
its vote count by 1.

Step 4:If the parameter set gets more votes than the validating
threshold v, the corresponding candidate circle is ver-
ified, and the number of edge points on the candidate
circle is counted and stored in n.. Then the ratio
pe = 5= is calculated. If p. is greater than or equal
to the circle percentage threshold p, the candidate is
recorded as a real circle in the edge image. The points
on the identified circle are erased from the edge image,
the hash table is emptied, and the counter variable ¢ is
reset to 0.

Step 5:1f no circle is detected based on the three random edge
points, set ¢ = ¢ + 1, and resample the edge points
from Step 2. When ¢ reaches the maximum sampling
threshold 7', the algorithm halts, and the detected circle
parameters are reported.

An example of the RHT process is illustrated in Fig 6. The
figure shows how the green circles, determined by three randomly
chosen points, gradually converge to the correct ROIs. After
circular ROI detection by RHT, the coordinates of the pixels
within the ROI are inverse-transformed back onto the original
image. It is observed that the automatically detected ROI in the
original image is accurate and these original pixel values can be
used later for Kinetics parameter estimation.

C. Self-referencing method

A self referencing method was adopted the to eliminate long-
term drift that affects the whole image during measurement. This
long-term drift may be caused by factors such as fluctuations
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Fig. 5: RHT procedures

of the light source or changes in ambient temperature. First,
four satellite spots were selected for each ROI at the following
locations.

1T Y1 o —To Yo —To
T2 Y2 _ |To—To Yo+To
= (16)
T3 Y3 To+7T0o Yo —To
T4 Y4 To+7ro Yo+ 7o

where [zo, yo, 70| are the center coordinates and radius of a
particular ROI in anlaysis. The four satellite sites around the ROI
are [z;, y;] with j = 1,...,4. Some satellite spots contained a
bubble or other factor that resulted in a drastic change in gray
level value of the pixels. The decision to include a satellite in the
analysis was made by comparing its value to that of the other
satellites. The decision to include a satellite (P; to be either true,



Fig. 6: An example run of RHT: (a) segmented image; (b) edge
detection result; (c) circles, each consisting of three randomly
picked points that are non-collinear; (d) gradual converging to
ROI; (e) the final RHT result

1, or false, 0) is defined by

0 ifoj/o>T1
P; = :
1 otherwise

where o is the variance of all four satellites; o, is the variance
of three other satellites, and 7 is a threshold. We used the average
pixel gray level values of the satellite set as the reference to obtain
a normalized SPR intensity curve over time,

a7

(18)

Inormalized = Isignal - Isatellites

where Igna denotes the the original measured intensity in each
frame over time, and Ilnormalizea is the normalized signal. The
average satellite intensity (/stenites) iS given by

S, x P,
SP,

where X1, is the light intensity of ith satellite in a satellite set.

Fig 7 shows the self-referencing result for spot 1. The black
normalized curve, used to estimate the molecule binding param-
eters, was obtained by subtracting the red satellite reference
intensity curve from the blue original intensity curve. Note that,
in Fig 7, there were three cycles in this experiment, each with
different signal intensities. Each cycle resulted from the analyte
having a different concentration. The higher the concentration,
the stronger the binding, the heavier the mass, and hence the
greater the SPR measurement.

19)
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IV. MOLECULE BINDING PARAMETERS ESTIMATION

Upon completion of automatic ROI detection from the
recorded video, the SPR data were extracted and the Kinetics
constants estimated. These parameters were obtained using
optimization algorithms that by minimized the MSE between
the measurements and system model.

A. Particle swarm optimization algorithm

PSO was first proposed by Eberhart and Kennedy[20] and
used for optimization of continuous nonlinear functions. It was
designed to emulate the social behavior of a swarm. The swarm
in PSO is composed of volume-less particles that move around
solution space, each of which represents a feasible solution to the
problem.
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Fig. 7: Self-referencing result of spot 1

The PSO algorithm is summarized in the pseudo code, Algo-
rithm 1.

Algorithm 1 PSO algorithm

Require: Random initial position and velocity of the particles:
X,(0) and V; (0)
1: while terminating condition is not reached do
2 for i =1 to number of particles do
3: Evaluate the fitness« f(X;)
4
5

Update ﬁ and E)
Adapt velocity of the particle using equation 20
and 21
6: Update the position of the particle;

7: return

PSO starts with a population of particles initialized with
random positions marked by vector 7z, and random velocities
v!. The population of these particles is called a “swarm”. Each
particle P stores two state variables: its current position 9@ and
its current velocity v(t). It is also equipped with a small memory
comprising its previous best position p(t), i.e., the personal best

experience and the best p(t) of all P’s, g@, i.e., the best position
found so far in the population of the swarm.

Initially, thS and m are set as ;ﬁ = g@ = z(0) for all

particles. Once the particles are all initialized, iterations begin,
where the positions and velocities of all the particles are altered
by the following recursive equations (20) and (21). The equations
are presented for the dth dimension of the position and velocity
of the ith particle.

via(t+1) = wvia(t) +e11(pia(t) —zia(t)) +c2p2(gia(t) — wia(t))
(20)

:L‘id(t 4+ 1) = :L‘id(t) + Uid(t +4 1) (21)

where w is an inertia weight factor; 0 < 1, 2 < 2 are two
uniformly distributed random numbers in velocity update; c;
and c; are two constant multiplier terms as the weights of “self
cognitive awareness” and ‘‘social influence”, respectively.

The first term in the velocity update rule represents the inertia
of the particle. Since the coefficient c; has a contribution towards
the self-exploration (or experience) of a particle, we regard it as



the particle’s self-confidence. On the other hand, the coefficient
c2 weights the contribution towards motion of the particles in
global best’s direction, which takes into account the motion of
all the particles in the preceding iterations. After calculating the
velocities and positions of the particles at the next time step,
t + 1, the first iteration of the algorithm is completed. Typically,
this process is iterated a certain number of time steps, or until
an acceptable solution has been found, or until an upper limit
of CPU usage has been reached.

B. Application of PSO to find binding parameters in SPR

In order to apply the PSO algorithm to find kinetic binding
constants in SPR, we first defined the solution space as the
possible range of the k., and k4. Raz, a scaling factor adapted
to the specific video frame intensity values, was defined in
equation (6). The fitness function was defined as the MSE between
the parametric curve using estimated Kinetic constants and the
measured sensorgram data. The PSO was performed and the
iteration stopped when it reached the stopping criteria based on
total iteration number and the convergence of the MSE value.

V. RESULTS

Fig 3 in section III-A shows the SPR experiment layout of the
ligants used in this study. Eight sets of ligands were planted on the
chip prior to injecting the analyte. Each ligand type was arranged
on the chip surface in an array consisting of 8 rows and 2 columns
(Table I). The analyte consists of Human Immunoglobulin G
(HIgG) in three different concentrations (Table II). The ROI
spots were labeled by numerical indices as shown in Fig 3, and
the analysis results on these ROIs will be referred to by these
indices hereafter.

TABLE I: Ligands List

1-16 Bovine Serum Albumin (BSA) 1
17-32 BSA 1 in PBS 1

33-48 BSA 1 in PBS 2

49-64 Phosphate-buffered Saline (PBS) 1
65-80 Phosphate-buffered Saline (PBS) 2
81-96 Bovine Serum Albumin (BSA) 2
97-112 BSA 1in PBS 1

113-128 BSA 2 in PBS 2

TABLE II: Analyte List

1 HIgG, 1.67 x 1077 (M)
2 HIgG, 3.33 x 1077 (M)
3 HIgG, 6.67 x 1077 (M)

BSA1 and BSA2 (spot 1-16 and spot 81-96) were active ligands
that interacted with the analyte. The other ligands were for
reference only. The sensorgram curve was extracted by the
procedures below.

A. ROI auto-detection result

Fig 8 shows the detected ROIs and the satellite sites around the
ROL. It was observed that all the ROIs on the chip surface were
correctly identified. Furthermore, the pixels inside each ROI were
accurately identified, which was a crucial step for the subsequent
estimation task.

Fig. 8: Detection of ROI and its satellites

B. Kinetic constant estimation and fitting results for spot 1

In order to demonstrate the results in detail, we used spot 1
to show the kinetic constant fitting for an active spot. The other
spots were processed in a similar manner, and the results for all
the spots are presented in section V-C.

The sensorgram curve of spot 1 was shown previously in
Fig 7, where three cycles with different analyte concentration
were clearly visible. Fig 9 (a) to 9 (c¢) show the LM and PSO
curve fitting results for the three cycles of spot 1. Since the three
cycles share the same kinetic constants k£, and k,, the MSE was
evaluated as the summation of MSE across all three cycles. Using
either LM or PSO, the estimated orders of magnitude of &, or
kq were similar. PSO is a random searching algorithm and hence
100 Monte Carlo simulation runs were carried out. The range
of the estimated parameters, as well as MSE values, are also
reported in Fig 9. It was observed that PSO consistently yielded
a smaller MSE value than the LM algorithm. Based on the Monte
Carlo simulation results of our PSO algorithm, we can deduce
that the solution space of this project is highly nonlinear with
many local minima. This conclusion was made because the best
result with the minimum MSE was not always found within the
100 Monte Carlo simulations, although the solutions were still
very good and much better than the solution found using the LM
algorithm. PSO achieved better result than LM because the LM
algorithm is a gradient based approach that is sensitive to local
minima which limits its ability to solve non-linear problems.

C. MSE comparison between LM fitting and PSO fitting for
all the spots

The results for all of the other active spots were similar to
spot 1 that was described in detail in section V-B. The estimated
molecular binding parameters and the MSE are shown using both
the LM and PSO methods (Table III). The MSE values for all the
active ROI spots are plotted in Fig 10 for easy comparison. The
PSO fitting algorithm was consistently found to be more accurate
than the commercially used LM algorithm. Out of 100 Monte
Carlo simulations, the decrease in MSE (an improvement) by
PSO over LM was at least 16.58% and up to as much as 73.9%.

D. Kinetic constant estimation and fitting results for tainted
data

Spots 88 and 96 were affected by air bubbles in the flow cell.
As a result, some cycles of the sensorgrams were invalid. Given
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Fig. 9: PSO curve fitting result for spot 1
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Fig. 10: MSE comparison between LM and PSO fitting on all
the active ROI spots

the less reliable data, the results on these two noisy spots are
excluded from comparison.

VI. CONCLUSION AND FUTURE WORK

This paper presented new image processing methods to en-
hance the efficiency of surface plasmon resonance. The first
enhancement was a method to automatically detect the regions of
interest (ROI). Automatic ROI detection was achieved using im-
age histogram equalization, affine transform, edge detection, and
the Randomized Hough Transformation. Applying the combina-
tion of these techniques successfully identified the pixels inside
the ROIs for data extraction. The second enhancement was an
improved method to estimate the molecule binding parameters.
A self-referencing method was used to mitigate the effect of
long term baseline shift and other noise. In addition, image
intensity data within each ROIs were analyzed using particle
swarm optimization to find the molecule binding parameters. The
PSO algorithm is more effective at analyzing nonlinear systems
than the LM algorithm that used a gradient approach. As a
result, the PSO algorithm had better fitting accuracy between
the model and the data, consistently yielding a smaller mean
squared error than the current LM method.

Future work includes: (1) Refining each method to further im-
prove the detection efficiency for better performance in real-time
applications, (2) Collecting real-time data from more experiments
to verify the robustness of the new ROI detection and parameter
estimation methods.
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