Graduate Student

Terail is designing “materials” in which the elastic modulus can be adjusted. This is being achieved by 3D printing mesostructures within the material.  These meso structures are smaller that the overall size of the part so overall part shapes can be achieved.  However, they are larger than the microstructure, material grains visible using a microscope.  Mesostructures are typically on the order of 0.1 mm to 1.5 mm in size.  Unlike foam metal that has a random mesostructure, the mesostructure created by 3D printing can be designed enabling more control of material properties.  One application of this research is to enable the ability to create an orthopaedic implant with an elastic modulus that matches that of bone to avoid stress shielding.  Moreover, because the material stiffness can be adjusted throughout the structure, areas of higher stress can be stiffened and other areas can be made more compliant.